Telegram Group & Telegram Channel
Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/265
Create:
Last Update:

Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/265

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA